Search results for "Spherical pendulum"

showing 3 items of 3 documents

Integrable Hamiltonian systems with swallowtails

2010

International audience; We consider two-degree-of-freedom integrable Hamiltonian systems with bifurcation diagrams containing swallowtail structures. The global properties of the action coordinates in such systems together with the parallel transport of the period lattice and corresponding quantum cells in the joint spectrum are described in detail. The relation to the concept of bidromy which was introduced in Sadovski´ı and Zhilinski´ı (2007 Ann. Phys. 322 164–200) is discussed.

Statistics and Probability[PHYS.PHYS.PHYS-CLASS-PH]Physics [physics]/Physics [physics]/Classical Physics [physics.class-ph]Integrable systemSINGULARITIESCoordinate systemGeneral Physics and Astronomy01 natural sciencesHamiltonian system[ PHYS.PHYS.PHYS-CLASS-PH ] Physics [physics]/Physics [physics]/Classical Physics [physics.class-ph]FRACTIONAL MONODROMY0103 physical sciences0101 mathematics010306 general physicsQuantumMathematical PhysicsBifurcationMathematicsMathematical physicsParallel transportSPHERICAL PENDULUMGEOMETRY010102 general mathematicsSpherical pendulumMathematical analysisStatistical and Nonlinear PhysicsRESONANCESACKER FAMILIESModeling and SimulationLIOUVILLEGravitational singularity
researchProduct

Rotation Forms and Local Hamiltonian Monodromy

2017

International audience; The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach …

[ MATH ] Mathematics [math]Pure mathematicsIntegrable systemFOCUS-FOCUS SINGULARITIESmath-phFOS: Physical sciencesDynamical Systems (math.DS)Homology (mathematics)01 natural sciencesSingularityMathematics::Algebraic Geometrymath.MPSYSTEMS0103 physical sciencesFOS: Mathematics0101 mathematicsAbelian groupMathematics - Dynamical Systems[MATH]Mathematics [math]010306 general physicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsNEIGHBORHOODS[PHYS]Physics [physics][ PHYS ] Physics [physics]010102 general mathematicsSpherical pendulumStatistical and Nonlinear PhysicsTorusMathematical Physics (math-ph)37JxxMonodromyStatistical and Nonlinear Physics; Mathematical PhysicsGravitational singularityPOINTSmath.DS
researchProduct

Abelian Integrals: From the Tangential 16th Hilbert Problem to the Spherical Pendulum

2016

In this chapter we deal with abelian integrals. They play a key role in the infinitesimal version of the 16th Hilbert problem. Recall that 16th Hilbert problem and its ramifications is one of the principal research subject of Christiane Rousseau and of the first author. We recall briefly the definition and explain the role of abelian integrals in 16th Hilbert problem. We also give a simple well-known proof of a property of abelian integrals. The reason for presenting it here is that it serves as a model for more complicated and more original treatment of abelian integrals in the study of Hamiltonian monodromy of fully integrable systems, which is the main subject of this chapter. We treat i…

symbols.namesakePure mathematicsIntegrable systemMonodromyInfinitesimalSlater integralsSpherical pendulumsymbolsAbelian groupHamiltonian (quantum mechanics)Mathematics
researchProduct